summaryrefslogtreecommitdiffstats
path: root/doc/specs/vulkan/chapters/textures.txt
blob: ea228ef39b9d833ab8d52d52a2b7d297b1244048 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
// Copyright (c) 2015-2017 Khronos Group. This work is licensed under a
// Creative Commons Attribution 4.0 International License; see
// http://creativecommons.org/licenses/by/4.0/

[[textures]]
= Image Operations

== Image Operations Overview

Image Operations are steps performed by SPIR-V image instructions, where
those instructions which take an code:OpTypeImage (representing a
sname:VkImageView) or code:OpTypeSampledImage (representing a
(sname:VkImageView, sname:VkSampler) pair) and texel coordinates as
operands, and return a value based on one or more neighboring texture
elements (_texels_) in the image.

[NOTE]
.Note
==================
Texel is a term which is a combination of the words texture and element.
Early interactive computer graphics supported texture operations on
textures, a small subset of the image operations on images described here.
The discrete samples remain essentially equivalent, however, so we retain
the historical term texel to refer to them.
==================

SPIR-V Image Instructions include the following functionality:

  * code:OpImageSample* and code:OpImageSparseSample* read one or more
    neighboring texels of the image, and <<textures-texel-filtering,filter>>
    the texel values based on the state of the sampler.
  ** Instructions with code:ImplicitLod in the name
     <<textures-level-of-detail-operation,determine>> the LOD used in the
     sampling operation based on the coordinates used in neighboring
     fragments.
  ** Instructions with code:ExplicitLod in the name
     <<textures-level-of-detail-operation,determine>> the LOD used in the
     sampling operation based on additional coordinates.
  ** Instructions with code:Proj in the name apply homogeneous
     <<textures-projection,projection>> to the coordinates.
  * code:OpImageFetch and code:OpImageSparseFetch return a single texel of
    the image.
    No sampler is used.
  * code:OpImage*code:Gather and code:OpImageSparse*code:Gather read
    neighboring texels and <<textures-gather,return a single component>> of
    each.
  * code:OpImageRead (and code:OpImageSparseRead) and code:OpImageWrite read
    and write, respectively, a texel in the image.
    No sampler is used.
  * Instructions with code:Dref in the name apply
    <<textures-depth-compare-operation,depth comparison>> on the texel
    values.
  * Instructions with code:Sparse in the name additionally return a
    <<textures-sparse-residency,sparse residency>> code.


=== Texel Coordinate Systems

Images are addressed by _texel coordinates_.
There are three _texel coordinate systems_:

  * normalized texel coordinates [eq]#[0.0, 1.0]#
  * unnormalized texel coordinates [eq]#[0.0, width / height / depth)#
  * integer texel coordinates [eq]#[0, width / height / depth)#

SPIR-V code:OpImageFetch, code:OpImageSparseFetch, code:OpImageRead,
code:OpImageSparseRead, and code:OpImageWrite instructions use integer texel
coordinates.
Other image instructions can: use either normalized or unnormalized texel
coordinates (selected by the pname:unnormalizedCoordinates state of the
sampler used in the instruction), but there are
<<samplers-unnormalizedCoordinates,limitations>> on what operations, image
state, and sampler state is supported.
Normalized coordinates are logically
<<textures-normalized-to-unnormalized,converted>> to unnormalized as part of
image operations, and <<textures-normalized-operations,certain steps>> are
only performed on normalized coordinates.
The array layer coordinate is always treated as unnormalized even when other
coordinates are normalized.

Normalized texel coordinates are referred to as [eq]#(s,t,r,q,a)#, with the
coordinates having the following meanings:

  * [eq]#s#: Coordinate in the first dimension of an image.
  * [eq]#t#: Coordinate in the second dimension of an image.
  * [eq]#r#: Coordinate in the third dimension of an image.
  ** [eq]#(s,t,r)# are interpreted as a direction vector for Cube images.
  * [eq]#q#: Fourth coordinate, for homogeneous (projective) coordinates.
  * [eq]#a#: Coordinate for array layer.

The coordinates are extracted from the SPIR-V operand based on the
dimensionality of the image variable and type of instruction.
For code:Proj instructions, the components are in order (s, [t,] [r,] q)
with t and r being conditionally present based on the code:Dim of the image.
For non-code:Proj instructions, the coordinates are (s [,t] [,r] [,a]), with
t and r being conditionally present based on the code:Dim of the image and a
being conditionally present based on the code:Arrayed property of the image.
Projective image instructions are not supported on code:Arrayed images.

Unnormalized texel coordinates are referred to as [eq]#(u,v,w,a)#, with the
coordinates having the following meanings:

  * [eq]#u#: Coordinate in the first dimension of an image.
  * [eq]#v#: Coordinate in the second dimension of an image.
  * [eq]#w#: Coordinate in the third dimension of an image.
  * [eq]#a#: Coordinate for array layer.

Only the [eq]#u# and [eq]#v# coordinates are directly extracted from the
SPIR-V operand, because only 1D and 2D (non-code:Arrayed) dimensionalities
support unnormalized coordinates.
The components are in order [eq]#(u [,v])#, with [eq]#v# being conditionally
present when the dimensionality is 2D.
When normalized coordinates are converted to unnormalized coordinates, all
four coordinates are used.

Integer texel coordinates are referred to as [eq]#(i,j,k,l,n)#, and the
first four in that order have the same meanings as unnormalized texel
coordinates.
They are extracted from the SPIR-V operand in order [eq]#(i, [,j], [,k],
[,l])#, with [eq]#j# and [eq]#k# conditionally present based on the code:Dim
of the image, and l conditionally present based on the code:Arrayed property
of the image.
n is the sample index and is taken from the code:Sample image operand.

For all coordinate types, unused coordinates are assigned a value of zero.

[[textures-texel-coordinate-systems-diagrams]]
image::images/vulkantexture0.png[align="center",title="Texel Coordinate Systems",{fullimagewidth}]
The Texel Coordinate Systems - For the example shown of an 8{times}4 texel
two dimensional image.

  * Normalized texel coordinates:
  ** The [eq]#s# coordinate goes from 0.0 to 1.0, left to right.
  ** The [eq]#t# coordinate goes from 0.0 to 1.0, top to bottom.
  * Unnormalized texel coordinates:
  ** The [eq]#u# coordinate goes from -1.0 to 9.0, left to right.
     The [eq]#u# coordinate within the range 0.0 to 8.0 is within the image,
     otherwise it is within the border.
  ** The [eq]#v# coordinate goes from -1.0 to 5.0, top to bottom.
     The [eq]#v# coordinate within the range 0.0 to 4.0 is within the image,
     otherwise it is within the border.
  * Integer texel coordinates:
  ** The [eq]#i# coordinate goes from -1 to 8, left to right.
     The [eq]#i# coordinate within the range 0 to 7 addresses texels within
     the image, otherwise it addresses a border texel.
  ** The [eq]#j# coordinate goes from -1 to 5, top to bottom.
     The [eq]#j# coordinate within the range 0 to 3 addresses texels within
     the image, otherwise it addresses a border texel.
  * Also shown for linear filtering:
  ** Given the unnormalized coordinates [eq]#(u,v)#, the four texels
     selected are [eq]#i~0~j~0~#, [eq]#i~1~j~0~#, [eq]#i~0~j~1~#, and
     [eq]#i~1~j~1~#.
  ** The weights [eq]#{alpha}# and [eq]#{beta}#.
  ** Given the offset [eq]#{DeltaUpper}~i~# and [eq]#{DeltaUpper}~j~#, the
     four texels selected by the offset are [eq]#i~0~j'~0~#,
     [eq]#i~1~j'~0~#, [eq]#i~0~j'~1~#, and [eq]#i~1~j'~1~#.

ifdef::VK_KHR_sampler_ycbcr_conversion[]
[NOTE]
.Note
====
For formats with reduced-resolution channels, [eq]#{DeltaUpper}~i~# and
[eq]#{DeltaUpper}~j~# are relative to the resolution of the
highest-resolution channel, and therefore may be divided by two relative to
the unnormalized coordinate space of the lower-resolution channels.
====
endif::VK_KHR_sampler_ycbcr_conversion[]

image::images/vulkantexture1.png[align="center",title="Texel Coordinate Systems",{fullimagewidth}]

The Texel Coordinate Systems - For the example shown of an 8{times}4 texel
two dimensional image.

  * Texel coordinates as above.
    Also shown for nearest filtering:
  ** Given the unnormalized coordinates [eq]#(u,v)#, the texel selected is
     [eq]#ij#.
  ** Given the offset [eq]#{DeltaUpper}~i~# and [eq]#{DeltaUpper}~j~#, the
     texel selected by the offset is [eq]#ij'#.


== Conversion Formulas

ifdef::editing-notes[]
[NOTE]
.editing-note
==================
(Bill) These Conversion Formulas will likely move to Section 2.7 Fixed-Point
Data Conversions (RGB to sRGB and sRGB to RGB) and section 2.6 Numeric
Representation and Computation (RGB to Shared Exponent and Shared Exponent
to RGB)
==================
endif::editing-notes[]


[[textures-RGB-sexp]]
=== RGB to Shared Exponent Conversion

An RGB color [eq]#(red, green, blue)# is transformed to a shared exponent
color [eq]#(red~shared~, green~shared~, blue~shared~, exp~shared~)# as
follows:

First, the components [eq]#(red, green, blue)# are clamped to
[eq]#(red~clamped~, green~clamped~, blue~clamped~)# as:

  :: [eq]#red~clamped~ = max(0, min(sharedexp~max~, red))#
  :: [eq]#green~clamped~ = max(0, min(sharedexp~max~, green))#
  :: [eq]#blue~clamped~ = max(0, min(sharedexp~max~, blue))#

Where:

[latexmath]
+++++++++++++++++++
\begin{aligned}
N               & = 9  & \text{number of mantissa bits per component} \\
B               & = 15 & \text{exponent bias} \\
E_{max}         & = 31 & \text{maximum possible biased exponent value} \\
sharedexp_{max} & = \frac{(2^N-1)}{2^N} \times 2^{(E_{max}-B)}
\end{aligned}
+++++++++++++++++++

[NOTE]
.Note
==================
[eq]#NaN#, if supported, is handled as in <<ieee-754,IEEE 754-2008>>
`minNum()` and `maxNum()`.
That is the result is a [eq]#NaN# is mapped to zero.
==================

The largest clamped component, [eq]#max~clamped~# is determined:

  :: [eq]#max~clamped~ = max(red~clamped~, green~clamped~, blue~clamped~)#

A preliminary shared exponent [eq]#exp'# is computed:
[latexmath]
+++++++++++++++++++
\begin{aligned}
exp' =
  \begin{cases}
    \left \lfloor \log_2(max_{clamped}) \right \rfloor + (B+1)
      & \text{for}\  max_{clamped} > 2^{-(B+1)} \\
    0
      & \text{for}\  max_{clamped} \leq 2^{-(B+1)}
  \end{cases}
\end{aligned}
+++++++++++++++++++

The shared exponent [eq]#exp~shared~# is computed:

[latexmath]
+++++++++++++++++++
\begin{aligned}
max_{shared} =
    \left \lfloor
        { \frac{max_{clamped}}{2^{(exp'-B-N)}} + \frac{1}{2} }
    \right \rfloor
\end{aligned}
+++++++++++++++++++

[latexmath]
+++++++++++++++++++
\begin{aligned}
exp_{shared} =
  \begin{cases}
    exp'   & \text{for}\  0 \leq max_{shared} < 2^N \\
    exp'+1 & \text{for}\  max_{shared} = 2^N
  \end{cases}
\end{aligned}
+++++++++++++++++++

Finally, three integer values in the range [eq]#0# to [eq]#2^N^# are
computed:

[latexmath]
+++++++++++++++++++
\begin{aligned}
red_{shared} & =
    \left \lfloor
        { \frac{red_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2} }
    \right \rfloor \\
green_{shared} & =
    \left \lfloor
        { \frac{green_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2} }
    \right \rfloor \\
blue_{shared} & =
    \left \lfloor
        { \frac{blue_{clamped}}{2^{(exp_{shared}-B-N)}}+ \frac{1}{2} }
    \right \rfloor
\end{aligned}
+++++++++++++++++++


[[textures-sexp-RGB]]
=== Shared Exponent to RGB

A shared exponent color [eq]#(red~shared~, green~shared~, blue~shared~,
exp~shared~)# is transformed to an RGB color [eq]#(red, green, blue)# as
follows:

  :: latexmath:[red = red_{shared} \times {2^{(exp_{shared}-B-N)}}]
  :: latexmath:[green = green_{shared} \times {2^{(exp_{shared}-B-N)}}]
  :: latexmath:[blue = blue_{shared} \times {2^{(exp_{shared}-B-N)}}]

Where:

  :: [eq]#N = 9# (number of mantissa bits per component)
  :: [eq]#B = 15# (exponent bias)


== Texel Input Operations

_Texel input instructions_ are SPIR-V image instructions that read from an
image.
_Texel input operations_ are a set of steps that are performed on state,
coordinates, and texel values while processing a texel input instruction,
and which are common to some or all texel input instructions.
They include the following steps, which are performed in the listed order:

  * <<textures-input-validation,Validation operations>>
  ** <<textures-operation-validation,Instruction/Sampler/Image validation>>
  ** <<textures-integer-coordinate-validation,Coordinate validation>>
  ** <<textures-sparse-validation,Sparse validation>>
  ** <<textures-layout-validation,Layout validation>>
  * <<textures-format-conversion,Format conversion>>
  * <<textures-texel-replacement,Texel replacement>>
  * <<textures-depth-compare-operation,Depth comparison>>
  * <<textures-conversion-to-rgba,Conversion to RGBA>>
  * <<textures-component-swizzle,Component swizzle>>
ifdef::VK_KHR_sampler_ycbcr_conversion[]
  * <<textures-chroma-reconstruction,Chroma reconstruction>>
  * <<textures-sampler-YCbCr-conversion,Y'C~B~C~R~ conversion>>
endif::VK_KHR_sampler_ycbcr_conversion[]

For texel input instructions involving multiple texels (for sampling or
gathering), these steps are applied for each texel that is used in the
instruction.
Depending on the type of image instruction, other steps are conditionally
performed between these steps or involving multiple coordinate or texel
values.

ifdef::VK_KHR_sampler_ycbcr_conversion[]
If <<textures-chroma-reconstruction,Chroma Reconstruction>> is implicit,
<<textures-filtering, Texel Filtering>> instead takes place during chroma
reconstruction, before <<textures-sampler-YCbCr-conversion,sampler
Y'C~B~C~R~ conversion>> occurs.
endif::VK_KHR_sampler_ycbcr_conversion[]


[[textures-input-validation]]
=== Texel Input Validation Operations

_Texel input validation operations_ inspect instruction/image/sampler state
or coordinates, and in certain circumstances cause the texel value to be
replaced or become undefined.
There are a series of validations that the texel undergoes.


[[textures-operation-validation]]
==== Instruction/Sampler/Image View Validation

There are a number of cases where a SPIR-V instruction can: mismatch with
the sampler, the image view, or both.
There are a number of cases where the sampler can: mismatch with the image
view.
In such cases the value of the texel returned is undefined.

These cases include:


  * The sampler pname:borderColor is an integer type and the image view
    pname:format is not one of the elink:VkFormat integer types or a stencil
    component of a depth/stencil format.
  * The sampler pname:borderColor is a float type and the image view
    pname:format is not one of the elink:VkFormat float types or a depth
    component of a depth/stencil format.
  * The sampler pname:borderColor is one of the opaque black colors
    (ename:VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK or
    ename:VK_BORDER_COLOR_INT_OPAQUE_BLACK) and the image view
    elink:VkComponentSwizzle for any of the slink:VkComponentMapping
    components is not ename:VK_COMPONENT_SWIZZLE_IDENTITY.
  * The elink:VkImageLayout of any subresource in the image view does not
    match that specified in slink:VkDescriptorImageInfo::pname:imageLayout
    used to write the image descriptor.
  * If the instruction is code:OpImageRead or code:OpImageSparseRead and the
    pname:shaderStorageImageReadWithoutFormat feature is not enabled, or the
    instruction is code:OpImageWrite and the
    pname:shaderStorageImageWriteWithoutFormat feature is not enabled, then
    the SPIR-V Image Format must: be <<spirvenv-image-formats,compatible>>
    with the image view's pname:format.
  * The sampler pname:unnormalizedCoordinates is ename:VK_TRUE and any of
    the <<samplers-unnormalizedCoordinates,limitations of unnormalized
    coordinates>> are violated.
  * The SPIR-V instruction is one of the code:OpImage*code:Dref*
    instructions and the sampler pname:compareEnable is ename:VK_FALSE
  * The SPIR-V instruction is not one of the code:OpImage*code:Dref*
    instructions and the sampler pname:compareEnable is ename:VK_TRUE
  * The SPIR-V instruction is one of the code:OpImage*code:Dref*
    instructions and the image view pname:format is not one of the
    depth/stencil formats with a depth component, or the image view aspect
    is not ename:VK_IMAGE_ASPECT_DEPTH_BIT.
  * The SPIR-V instruction's image variable's properties are not compatible
    with the image view:
  ** Rules for pname:viewType:
  *** ename:VK_IMAGE_VIEW_TYPE_1D must: have code:Dim = 1D, code:Arrayed =
      0, code:MS = 0.
  *** ename:VK_IMAGE_VIEW_TYPE_2D must: have code:Dim = 2D, code:Arrayed =
      0.
  *** ename:VK_IMAGE_VIEW_TYPE_3D must: have code:Dim = 3D, code:Arrayed =
      0, code:MS = 0.
  *** ename:VK_IMAGE_VIEW_TYPE_CUBE must: have code:Dim = Cube, code:Arrayed
      = 0, code:MS = 0.
  *** ename:VK_IMAGE_VIEW_TYPE_1D_ARRAY must: have code:Dim = 1D,
      code:Arrayed = 1, code:MS = 0.
  *** ename:VK_IMAGE_VIEW_TYPE_2D_ARRAY must: have code:Dim = 2D,
      code:Arrayed = 1.
  *** ename:VK_IMAGE_VIEW_TYPE_CUBE_ARRAY must: have code:Dim = Cube,
      code:Arrayed = 1, code:MS = 0.
  ** If the image was created with slink:VkImageCreateInfo::pname:samples
     equal to ename:VK_SAMPLE_COUNT_1_BIT, the instruction must: have
     code:MS = 0.
  ** If the image was created with slink:VkImageCreateInfo::pname:samples
     not equal to ename:VK_SAMPLE_COUNT_1_BIT, the instruction must: have
     code:MS = 1.

ifdef::VK_KHR_sampler_ycbcr_conversion[]
Only code:OpImageSample* and code:OpImageSparseSample* can: be used with a
sampler that enables <<samplers-YCbCr-conversion,sampler Y'C~B~C~R~
conversion>>.

code:OpImageFetch, code:OpImageSparseFetch, code:OpImage*code:Gather, and
code:OpImageSparse*code:Gather must: not be used with a sampler that enables
<<samplers-YCbCr-conversion,sampler Y'C~B~C~R~ conversion>>.

The code:ConstOffset and code:Offset operands must: not be used with a
sampler that enables <<samplers-YCbCr-conversion,sampler Y'C~B~C~R~
conversion>>.
endif::VK_KHR_sampler_ycbcr_conversion[]


[[textures-integer-coordinate-validation]]
==== Integer Texel Coordinate Validation

Integer texel coordinates are validated against the size of the image level,
and the number of layers and number of samples in the image.
For SPIR-V instructions that use integer texel coordinates, this is
performed directly on the integer coordinates.
For instructions that use normalized or unnormalized texel coordinates, this
is performed on the coordinates that result after
<<textures-unnormalized-to-integer,conversion>> to integer texel
coordinates.

If the integer texel coordinates do not satisfy all of the conditions

  :: [eq]#0 {leq} i < w~s~#
  :: [eq]#0 {leq} j < h~s~#
  :: [eq]#0 {leq} k < d~s~#
  :: [eq]#0 {leq} l < layers#
  :: [eq]#0 {leq} n < samples#

where:

  :: [eq]#w~s~ =# width of the image level
  :: [eq]#h~s~ =# height of the image level
  :: [eq]#d~s~ =# depth of the image level
  :: [eq]#layers =# number of layers in the image
  :: [eq]#samples =# number of samples per texel in the image

then the texel fails integer texel coordinate validation.

There are four cases to consider:

  . Valid Texel Coordinates
+
  * If the texel coordinates pass validation (that is, the coordinates lie
     within the image),
+
then the texel value comes from the value in image memory.

  . Border Texel
+
  * If the texel coordinates fail validation, and
  * If the read is the result of an image sample instruction or image gather
     instruction, and
  * If the image is not a cube image,
+
then the texel is a border texel and <<textures-texel-replacement,texel
replacement>> is performed.

  . Invalid Texel
+
  * If the texel coordinates fail validation, and
  * If the read is the result of an image fetch instruction, image read
    instruction, or atomic instruction,
+
then the texel is an invalid texel and <<textures-texel-replacement,texel
replacement>> is performed.

  . Cube Map Edge or Corner
+
Otherwise the texel coordinates lie on the borders along the edges and
corners of a cube map image, and <<textures-cubemapedge, Cube map edge
handling>> is performed.


[[textures-cubemapedge]]
==== Cube Map Edge Handling

If the texel coordinates lie on the borders along the edges and corners of a
cube map image, the following steps are performed.
Note that this only occurs when using ename:VK_FILTER_LINEAR filtering
within a mip level, since ename:VK_FILTER_NEAREST is treated as using
ename:VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE.

  * Cube Map Edge Texel
+
  ** If the texel lies along the border in either only [eq]#i# or only
    [eq]#j#
+
then the texel lies along an edge, so the coordinates [eq]#(i,j)# and the
array layer [eq]#l# are transformed to select the adjacent texel from the
appropriate neighboring face.

  * Cube Map Corner Texel
+
  ** If the texel lies along the border in both [eq]#i# and [eq]#j#
+
then the texel lies at a corner and there is no unique neighboring face from
which to read that texel.
The texel should: be replaced by the average of the three values of the
adjacent texels in each incident face.
However, implementations may: replace the cube map corner texel by other
methods, subject to the constraint that if the three available samples have
the same value, the replacement texel also has that value.


[[textures-sparse-validation]]
==== Sparse Validation

If the texel reads from an unbound region of a sparse image, the texel is a
_sparse unbound texel_, and processing continues with
<<textures-texel-replacement,texel replacement>>.

ifdef::VK_KHR_sampler_ycbcr_conversion[]

[[textures-layout-validation]]
==== Layout Validation

If all planes of a _disjoint_ _multi-planar_ image are not in the same
<<resources-image-layouts,image layout>> when the image is sampled with
<<samplers-YCbCr-conversion,sampler Y'C~B~C~R~ conversion>>, the result of
texel reads is undefined.

endif::VK_KHR_sampler_ycbcr_conversion[]

[[textures-format-conversion]]
=== Format Conversion

Texels undergo a format conversion from the elink:VkFormat of the image view
to a vector of either floating point or signed or unsigned integer
components, with the number of components based on the number of components
present in the format.

  * Color formats have one, two, three, or four components, according to the
    format.
  * Depth/stencil formats are one component.
    The depth or stencil component is selected by the pname:aspectMask of
    the image view.

Each component is converted based on its type and size (as defined in the
<<features-formats-definition,Format Definition>> section for each
elink:VkFormat), using the appropriate equations in
<<fundamentals-fp16,16-Bit Floating-Point Numbers>>,
<<fundamentals-fp11,Unsigned 11-Bit Floating-Point Numbers>>,
<<fundamentals-fp10,Unsigned 10-Bit Floating-Point Numbers>>,
<<fundamentals-fixedconv,Fixed-Point Data Conversion>>, and
<<textures-sexp-RGB,Shared Exponent to RGB>>.
Signed integer components smaller than 32 bits are sign-extended.

If the image format is sRGB, the color components are first converted as if
they are UNORM, and then sRGB to linear conversion is applied to the R, G,
and B components as described in the "`sRGB EOTF`" section of the
<<data-format,Khronos Data Format Specification>>.
The A component, if present, is unchanged.

If the image view format is block-compressed, then the texel value is first
decoded, then converted based on the type and number of components defined
by the compressed format.


[[textures-texel-replacement]]
=== Texel Replacement

A texel is replaced if it is one (and only one) of:

  * a border texel,
  * an invalid texel, or
  * a sparse unbound texel.

Border texels are replaced with a value based on the image format and the
pname:borderColor of the sampler.
The border color is:

[[textures-border-replacement-color]]
.Border Color [eq]#B#
[options="header",cols="60%,40%"]
|====
| Sampler pname:borderColor                     | Corresponding Border Color
| ename:VK_BORDER_COLOR_FLOAT_TRANSPARENT_BLACK | [eq]#B = (0.0, 0.0, 0.0, 0.0)#
| ename:VK_BORDER_COLOR_FLOAT_OPAQUE_BLACK      | [eq]#B = (0.0, 0.0, 0.0, 1.0)#
| ename:VK_BORDER_COLOR_FLOAT_OPAQUE_WHITE      | [eq]#B = (1.0, 1.0, 1.0, 1.0)#
| ename:VK_BORDER_COLOR_INT_TRANSPARENT_BLACK   | [eq]#B = (0, 0, 0, 0)#
| ename:VK_BORDER_COLOR_INT_OPAQUE_BLACK        | [eq]#B = (0, 0, 0, 1)#
| ename:VK_BORDER_COLOR_INT_OPAQUE_WHITE        | [eq]#B = (1, 1, 1, 1)#
|====

[NOTE]
.Note
====
The names etext:VK_BORDER_COLOR_*\_TRANSPARENT_BLACK,
etext:VK_BORDER_COLOR_*\_OPAQUE_BLACK, and
etext:VK_BORDER_COLOR_*_OPAQUE_WHITE are meant to describe which components
are zeros and ones in the vocabulary of compositing, and are not meant to
imply that the numerical value of ename:VK_BORDER_COLOR_INT_OPAQUE_WHITE is
a saturating value for integers.
====

This is substituted for the texel value by replacing the number of
components in the image format

[[textures-border-replacement-table]]
.Border Texel Components After Replacement
[width="80%",options="header"]
|====
| Texel Aspect or Format      | Component Assignment
| Depth aspect                | [eq]#D       = B~r~#
| Stencil aspect              | [eq]#S       = B~r~#
| One component color format  | [eq]#C~r~    = B~r~#
| Two component color format  | [eq]#C~rg~   = (B~r~,B~g~)#
| Three component color format| [eq]#C~rgb~  = (B~r~,B~g~,B~b~)#
| Four component color format | [eq]#C~rgba~ = (B~r~,B~g~,B~b~,B~a~)#
|====

If the read operation is from a buffer resource, and the
pname:robustBufferAccess feature is enabled, an invalid texel is replaced as
described <<features-features-robustBufferAccess,here>>.

If the pname:robustBufferAccess feature is not enabled, the value of an
invalid texel is undefined.

ifdef::editing-notes[]
[NOTE]
.editing-note
==================
(Bill) This is not currently catching this significant case.

For opImageFetch, which fetches from an *image* not a buffer, the result is
defined if pname:robustBufferAccess is enabled.
==================
endif::editing-notes[]

If the
slink:VkPhysicalDeviceSparseProperties::pname:residencyNonResidentStrict
property is ename:VK_TRUE, a sparse unbound texel is replaced with 0 or 0.0
values for integer and floating-point components of the image format,
respectively.

If pname:residencyNonResidentStrict is ename:VK_FALSE, the read must: be
safe, but the value of the sparse unbound texel is undefined.


[[textures-depth-compare-operation]]
=== Depth Compare Operation

If the image view has a depth/stencil format, the depth component is
selected by the pname:aspectMask, and the operation is a code:Dref
instruction, a depth comparison is performed.
The value of the result [eq]#D# is [eq]#1.0# if the result of the compare
operation is [eq]#true#, and [eq]#0.0# otherwise.
The compare operation is selected by the pname:compareOp member of the
sampler.

[latexmath]
+++++++++++++++++++
\begin{aligned}
D & = 1.0 &
  \begin{cases}
    D_{\textit{ref}} \leq D & \text{for LEQUAL}   \\
    D_{\textit{ref}} \geq D & \text{for GEQUAL}   \\
    D_{\textit{ref}} < D    & \text{for LESS}     \\
    D_{\textit{ref}} > D    & \text{for GREATER}  \\
    D_{\textit{ref}} = D    & \text{for EQUAL}    \\
    D_{\textit{ref}} \neq D & \text{for NOTEQUAL} \\
    \textit{true}           & \text{for ALWAYS}   \\
    \textit{false}          & \text{for NEVER}
  \end{cases} \\
D & = 0.0 & \text{otherwise}
\end{aligned}
+++++++++++++++++++

where, in the depth comparison:

  :: [eq]#D~ref~ = shaderOp.D~ref~# (from optional: SPIR-V operand)
  :: [eq]#D# (texel depth value)


[[textures-conversion-to-rgba]]
=== Conversion to RGBA

The texel is expanded from one, two, or three to four components based on
the image base color:

[[textures-texel-color-rgba-conversion-table]]
.Texel Color After Conversion To RGBA
[options="header"]
|====
| Texel Aspect or Format      | RGBA Color
| Depth aspect                | [eq]#C~rgba~ = (D,0,0,one)#
| Stencil aspect              | [eq]#C~rgba~ = (S,0,0,one)#
| One component color format  | [eq]#C~rgba~ = (C~r~,0,0,one)#
| Two component color format  | [eq]#C~rgba~ = (C~rg~,0,one)#
| Three component color format| [eq]#C~rgba~ = (C~rgb~,one)#
| Four component color format | [eq]#C~rgba~ = C~rgba~#
|====

where [eq]#one = 1.0f# for floating-point formats and depth aspects, and
[eq]#one = 1# for integer formats and stencil aspects.


[[textures-component-swizzle]]
=== Component Swizzle

ifndef::VK_KHR_sampler_ycbcr_conversion[]
All texel input instructions apply a _swizzle_ based on the
elink:VkComponentSwizzle enums in the pname:components member of the
slink:VkImageViewCreateInfo structure for the image being read.
endif::VK_KHR_sampler_ycbcr_conversion[]
ifdef::VK_KHR_sampler_ycbcr_conversion[]
All texel input instructions apply a _swizzle_ based on:

 * the elink:VkComponentSwizzle enums in the pname:components member of the
   slink:VkImageViewCreateInfo structure for the image being read if
   <<samplers-YCbCr-conversion,sampler Y'C~B~C~R~ conversion>> is not
   enabled, and
 * the elink:VkComponentSwizzle enums in the pname:components member of the
   slink:VkSamplerYcbcrConversionCreateInfoKHR structure for the
   <<samplers-YCbCr-conversion,sampler Y'C~B~C~R~ conversion>> if sampler
   Y'C~B~C~R~ conversion is enabled.

endif::VK_KHR_sampler_ycbcr_conversion[]

The swizzle can: rearrange the components of the texel, or substitute zero
and one for any components.
It is defined as follows for the R component, and operates similarly for the
other components.


[latexmath]
+++++++++++++++++++
\begin{aligned}
C'_{rgba}[R] & =
  \begin{cases}
    C_{rgba}[R] & \text{for RED swizzle}   \\
    C_{rgba}[G] & \text{for GREEN swizzle} \\
    C_{rgba}[B] & \text{for BLUE swizzle}  \\
    C_{rgba}[A] & \text{for ALPHA swizzle} \\
    0           & \text{for ZERO swizzle}  \\
    one         & \text{for ONE swizzle} \\
    C_{rgba}[R] & \text{for IDENTITY swizzle}
  \end{cases}
\end{aligned}
+++++++++++++++++++

where:

[latexmath]
+++++++++++++++++++
\begin{aligned}
C_{rgba}[R] & \text{is the RED component} \\
C_{rgba}[G] & \text{is the GREEN component} \\
C_{rgba}[B] & \text{is the BLUE component} \\
C_{rgba}[A] & \text{is the ALPHA component} \\
one         & = 1.0\text{f}  & \text{for floating point components} \\
one         & = 1              & \text{for integer components}
\end{aligned}
+++++++++++++++++++

For each component this is applied to, the
ename:VK_COMPONENT_SWIZZLE_IDENTITY swizzle selects the corresponding
component from [eq]#C~rgba~#.

If the border color is one of the etext:VK_BORDER_COLOR_*_OPAQUE_BLACK enums
and the elink:VkComponentSwizzle is not ename:VK_COMPONENT_SWIZZLE_IDENTITY
for all components (or the
<<resources-image-views-identity-mappings,equivalent identity mapping>>),
the value of the texel after swizzle is undefined.


[[textures-sparse-residency]]
=== Sparse Residency

code:OpImageSparse* instructions return a structure which includes a
_residency code_ indicating whether any texels accessed by the instruction
are sparse unbound texels.
This code can: be interpreted by the code:OpImageSparseTexelsResident
instruction which converts the residency code to a boolean value.


ifdef::VK_KHR_sampler_ycbcr_conversion[]
[[textures-chroma-reconstruction]]
=== Chroma Reconstruction

In some color models, the color representation is defined in terms of
monochromatic light intensity (often called "`luma`") and color differences
relative to this intensity, often called "`chroma`".
It is common for color models other than RGB to represent the chroma
channels at lower spatial resolution than the luma channel.
This approach is used to take advantage of the eye's lower spatial
sensitivity to color compared with its sensitivity to brightness.
Less commonly, the same approach is used with additive color, since the
green channel dominates the eye's sensitivity to light intensity and the
spatial sensitivity to color introduced by red and blue is lower.

Lower-resolution channels are "`downsampled`" by resizing them to a lower
spatial resolution than the channel representing luminance.
The process of reconstructing a full color value for texture access involves
accessing both chroma and luma values at the same location.
To generate the color accurately, the values of the lower-resolution
channels at the location of the luma samples must be reconstructed from the
lower-resolution sample locations, an operation known here as "`chroma
reconstruction`" irrespective of the actual color model.

The location of the chroma samples relative to the luma coordinates is
determined by the pname:xChromaOffset and pname:yChromaOffset members of the
slink:VkSamplerYcbcrConversionCreateInfoKHR structure used to create the
sampler Y'C~B~C~R~ conversion.

The following diagrams show the relationship between unnormalized (_u_,_v_)
coordinates and (_i_,_j_) integer texel positions in the luma channel (shown
in black, with circles showing integer sample positions) and the texel
coordinates of reduced-resolution chroma channels, shown as crosses in red.

[NOTE]
.Note
====
If the chroma values are reconstructed at the locations of the luma samples
by means of interpolation, chroma samples from outside the image bounds are
needed; these are determined according to <<textures-wrapping-operation>>.
These diagrams represent this by showing the bounds of the "`chroma texel`"
extending beyond the image bounds, and including additional chroma sample
positions where required for interpolation.
The limits of a sample for etext:NEAREST sampling is shown as a grid.
====

image::images/chromasamples_422_cosited.svg[align="center",title="422 downsampling, xChromaOffset=COSITED_EVEN",width="400"]

image::images/chromasamples_422_midpoint.svg[align="center",title="422 downsampling, xChromaOffset=MIDPOINT",width="400"]

image::images/chromasamples_420_xcosited_ycosited.svg[align="center",title="420 downsampling, xChromaOffset=COSITED_EVEN, yChromaOffset=COSITED_EVEN",width="400"]

image::images/chromasamples_420_xmidpoint_ycosited.svg[align="center",title="420 downsampling, xChromaOffset=MIDPOINT, yChromaOffset=COSITED_EVEN",width="400"]

image::images/chromasamples_420_xcosited_ymidpoint.svg[align="center",title="420 downsampling, xChromaOffset=COSITED_EVEN, yChromaOffset=MIDPOINT",width="400"]

image::images/chromasamples_420_xmidpoint_ymidpoint.svg[align="center",title="420 downsampling, xChromaOffset=MIDPOINT, yChromaOffset=MIDPOINT",width="400"]

Reconstruction is implemented in one of two ways:

If the format of the image that is to be sampled sets
ename:VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR,
or the sname:VkSamplerYcbcrConversionCreateInfoKHR's
pname:forceExplicitReconstruction is set to ename:VK_TRUE, reconstruction is
performed as an explicit step independent of filtering, described in the
<<textures-explict-reconstruction,Explicit Reconstruction>> section.

If the format of the image that is to be sampled does not set
ename:VK_FORMAT_FEATURE_SAMPLED_IMAGE_YCBCR_CONVERSION_CHROMA_RECONSTRUCTION_EXPLICIT_BIT_KHR
and if the sname:VkSamplerYcbcrConversionCreateInfoKHR's
pname:forceExplicitReconstruction is set to ename:VK_FALSE, reconstruction
is performed as an implicit part of filtering prior to color model
conversion, with no separate post-conversion texel filtering step, as
described in the <<textures-implict-reconstruction,Implicit Reconstruction>>
section.

[[textures-explicit-reconstruction]]
==== Explicit Reconstruction

  * If the pname:chromaFilter member of the
    slink:VkSamplerYcbcrConversionCreateInfoKHR structure is
    ename:VK_FILTER_NEAREST:
    ** If the format's R and B channels are reduced in resolution in just
       width by a factor of two relative to the G channel (i.e. this is a
       "`etext:_422`" format), the latexmath:[\tau_{ijk}[level\]] values
       accessed by <<textures-texel-filtering,texel filtering>> are
       reconstructed as follows:
+
[latexmath]
++++++++++++++
\begin{aligned}
\tau_R'(i, j) & = \tau_R(\lfloor{i\times 0.5}\rfloor, j)[level] \\
\tau_B'(i, j) & = \tau_B(\lfloor{i\times 0.5}\rfloor, j)[level]
\end{aligned}
++++++++++++++

    ** If the format's R and B channels are reduced in resolution in width
       and height by a factor of two relative to the G channel (i.e. this is
       a "`etext:_420`" format), the latexmath:[\tau_{ijk}[level\]] values
       accessed by <<textures-texel-filtering,texel filtering>> are
       reconstructed as follows:
+
[latexmath]
++++++++++++++
\begin{aligned}
\tau_R'(i, j) & = \tau_R(\lfloor{i\times 0.5}\rfloor, \lfloor{j\times 0.5}\rfloor)[level] \\
\tau_B'(i, j) & = \tau_B(\lfloor{i\times 0.5}\rfloor, \lfloor{j\times 0.5}\rfloor)[level]
\end{aligned}
++++++++++++++
+
[NOTE]
.Note
====
pname:xChromaOffset and pname:yChromaOffset have no effect if
pname:chromaFilter is ename:VK_FILTER_NEAREST for explicit reconstruction.
====

  * If the pname:chromaFilter member of the
    slink:VkSamplerYcbcrConversionCreateInfoKHR structure is
    ename:VK_FILTER_LINEAR:
  ** If the format's R and B channels are reduced in resolution in just
     width by a factor of two relative to the G channel (i.e. this is a
     "`422`" format):
  *** If pname:xChromaOffset is ename:VK_CHROMA_LOCATION_COSITED_EVEN_KHR:
+
[latexmath]
+++++
\tau_{RB}'(i,j) = \begin{cases}
\tau_{RB}(\lfloor{i\times 0.5}\rfloor,j)[level], & 0.5 \times i = \lfloor{0.5 \times i}\rfloor\\
0.5\times\tau_{RB}(\lfloor{i\times 0.5}\rfloor,j)[level] + \\
0.5\times\tau_{RB}(\lfloor{i\times 0.5}\rfloor + 1,j)[level], & 0.5 \times i \neq \lfloor{0.5 \times i}\rfloor
\end{cases}
+++++
+
  *** If pname:xChromaOffset is ename:VK_CHROMA_LOCATION_MIDPOINT_KHR:
+
[latexmath]
+++++
\tau_{RB}(i,j)' = \begin{cases}
0.25 \times \tau_{RB}(\lfloor{i\times 0.5}\rfloor - 1,j)[level] + \\
0.75 \times \tau_{RB}(\lfloor{i\times 0.5}\rfloor,j)[level], & 0.5 \times i = \lfloor{0.5 \times i}\rfloor\\
0.75 \times \tau_{RB}(\lfloor{i\times 0.5}\rfloor,j)[level] + \\
0.25 \times \tau_{RB}(\lfloor{i\times 0.5}\rfloor + 1,j)[level], & 0.5 \times i \neq \lfloor{0.5 \times i}\rfloor
\end{cases}
+++++

  ** If the format's R and B channels are reduced in resolution in width and
     height by a factor of two relative to the G channel (i.e. this is a
     "`420`" format), a similar relationship applies.
     Due to the number of options, these formulae are expressed more
     concisely as follows:
+
[width="30%",options="header",cols="5,1"]
|==========
| pname:xChromaOffset | &#948;~i~
| etext:COSITED_EVEN  | 0
| etext:MIDPOINT      | 0.5
|==========
+
[width="30%",options="header",cols="5,1"]
|==========
| pname:yChromaOffset | &#948;~j~
| etext:COSITED_EVEN  | 0
| etext:MIDPOINT      | 0.5
|==========
+
[latexmath]
+++++
\begin{aligned}
\tau_{RB}'(i,j) = &\\
&\tau_{RB}(\lfloor 0.5\times(i-\delta_i)\rfloor, \lfloor 0.5\times(j-\delta_j)\rfloor)[level]
&& \times (1 - (0.5\times(i-\delta_i) - \lfloor 0.5\times(i-\delta_i)\rfloor))
&& \times (1 - (0.5\times(j-\delta_j) - \lfloor 0.5\times(j-\delta_j)\rfloor)) +\\
&\tau_{RB}(1+\lfloor 0.5\times(i-\delta_i)\rfloor, \lfloor 0.5\times(j-\delta_j)\rfloor)[level]
&& \times (0.5\times(i-\delta_i) - \lfloor 0.5\times(i-\delta_i)\rfloor)
&& \times (1 - (0.5\times(j-\delta_j) - \lfloor 0.5\times(j-\delta_j)\rfloor)) +\\
&\tau_{RB}(\lfloor 0.5\times(i-\delta_i)\rfloor, 1+\lfloor 0.5\times(j-\delta_j)\rfloor)[level]
&& \times (1 - (0.5\times(i-\delta_i) - \lfloor 0.5\times(i-\delta_i)\rfloor))
&& \times (0.5\times(j-\delta_j) - \lfloor 0.5\times(j-\delta_j)\rfloor) +\\
&\tau_{RB}(1+\lfloor 0.5\times(i-\delta_i)\rfloor, 1+\lfloor 0.5\times(j-\delta_j)\rfloor)[level]
&& \times (0.5\times(i-\delta_i) - \lfloor 0.5\times(i-\delta_i)\rfloor)
&& \times (0.5\times(j-\delta_j) - \lfloor 0.5\times(j-\delta_j)\rfloor)
\end{aligned}
+++++

[NOTE]
======
In the case where the texture itself is bilinearly interpolated as described
in <<textures-texel-filtering,Texel Filtering>>, thus requiring four
full-color samples for the filtering operation, and where the reconstruction
of these samples uses bilinear interpolation in the chroma channels due to
pname:chromaFilter=ename:VK_FILTER_LINEAR, up to nine chroma samples may be
required, depending on the sample location.
======


[[textures-implict-reconstruction]]
==== Implicit Reconstruction

Implicit reconstruction takes place by the samples being interpolated, as
required by the filter settings of the sampler, except that
pname:chromaFilter takes precedence for the chroma samples.
The sample coordinates are adjusted by the downsample factor of the channel
(such that, for example, the sample coordinates are divided by two if the
channel has a downsample factor of two relative to the luma channel):

[latexmath]
++++++
\begin{aligned}
u_{RB}' (422/420) &=
  \begin{cases}
     0.5\times (u + 0.5), & \textrm{xChromaOffset = COSITED}\_\textrm{EVEN} \\
     0.5\times u, & \textrm{xChromaOffset = MIDPOINT}
  \end{cases} \\
v_{RB}' (420) &=
  \begin{cases}
     0.5\times (v + 0.5), & \textrm{yChromaOffset = COSITED}\_\textrm{EVEN} \\
     0.5\times v, & \textrm{yChromaOffset = MIDPOINT}
  \end{cases}
\end{aligned}
++++++


[[textures-sampler-YCbCr-conversion]]
=== Sampler Y'C~B~C~R~ Conversion

Sampler Y'C~B~C~R~ conversion performs the following operations, which an
implementation may: combine into a single mathematical operation:

  * <<textures-sampler-YCbCr-conversion-rangeexpand,Sampler Y'C~B~C~R~ Range
    Expansion>>
  * <<textures-sampler-YCbCr-conversion-modelconversion,Sampler Y'C~B~C~R~
    Model Conversion>>

[[textures-sampler-YCbCr-conversion-rangeexpand]]
==== Sampler Y'C~B~C~R~ Range Expansion

Sampler Y'C~B~C~R~ range expansion is applied to color channel values after
all texel input operations which are not specific to sampler Y'C~B~C~R~
conversion.
For example, the input values to this stage have been converted using the
normal <<textures-format-conversion,format conversion>> rules.

Sampler Y'C~B~C~R~ range expansion is not applied if pname:ycbcrModel is
ename:VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY_KHR.
That is, the shader receives the vector C'~rgba~ as output by the Component
Swizzle stage without further modification.

For other values of pname:ycbcrModel, range expansion is applied to the
texel channel values output by the <<textures-component-swizzle,Component
Swizzle>> defined by the pname:components member of
slink:VkSamplerYcbcrConversionCreateInfoKHR.
Range expansion applies independently to each channel of the image.
For the purposes of range expansion and Y'C~B~C~R~ model conversion, the R
and B channels contain color difference (chroma) values and the G channel
contains luma.
The A channel is not modified by sampler Y'C~B~C~R~ range expansion.

The range expansion to be applied is defined by the pname:ycbcrRange member
of the sname:VkSamplerYcbcrConversionCreateInfoKHR structure:

  * If pname:ycbcrRange is ename:VK_SAMPLER_YCBCR_RANGE_ITU_FULL_KHR, the
    following transformations are applied:
+
[latexmath]
+++++++++++++++++++
\begin{aligned}
Y' &= C'_{rgba}[G] \\
C_B &= C'_{rgba}[B] - {{2^{(n-1)}}\over{(2^n) - 1}} \\
C_R &= C'_{rgba}[R] - {{2^{(n-1)}}\over{(2^n) - 1}}
\end{aligned}
+++++++++++++++++++
+
[NOTE]
.Note
====
These formulae correspond to the "`full range`" encoding in the
<<data-format,Khronos Data Format Specification>>.

Should any future amendments be made to the ITU specifications from which
these equations are derived, the formulae used by Vulkan may: also be
updated to maintain parity.
====
  * If pname:ycbcrRange is ename:VK_SAMPLER_YCBCR_RANGE_ITU_NARROW_KHR, the
    following transformations are applied:
+
[latexmath]
+++++++++++++++++++
\begin{aligned}
Y' &= {{C'_{rgba}[G] \times (2^n-1) - 16\times 2^{n-8}}\over{219\times 2^{n-8}}} \\
C_B &= {{C'_{rgba}[B] \times \left(2^n-1\right) - 128\times 2^{n-8}}\over{224\times 2^{n-8}}} \\
C_R &= {{C'_{rgba}[R] \times \left(2^n-1\right) - 128\times 2^{n-8}}\over{224\times 2^{n-8}}}
\end{aligned}
+++++++++++++++++++
+
[NOTE]
.Note
====
These formulae correspond to the "`narrow range`" encoding in the
<<data-format,Khronos Data Format Specification>>.
====
  * _n_ is the bit-depth of the channels in the format.

The precision of the operations performed during range expansion must: be at
least that of the source format.

An implementation may: clamp the results of these range expansion operations
such that Y' falls in the range [0,1], and/or such that C~B~ and C~R~ fall
in the range [-0.5,0.5].

[[textures-sampler-YCbCr-conversion-modelconversion]]
==== Sampler Y'C~B~C~R~ Model Conversion

The range-expanded values are converted between color models, according to
the color model conversion specified in the pname:ycbcrModel member:

ename:VK_SAMPLER_YCBCR_MODEL_CONVERSION_RGB_IDENTITY_KHR::
  The color channels are not modified by the color model conversion since
  they are assumed already to represent the desired color model in which the
  shader is operating; Y'C~B~C~R~ range expansion is also ignored.
ename:VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_IDENTITY_KHR::
  The color channels are not modified by the color model conversion and are
  assumed to be treated as though in Y'C~B~C~R~ form both in memory and in
  the shader; Y'C~B~C~R~ range expansion is applied to the channels as for
  other Y'C~B~C~R~ models, with the vector (C~R~,Y',C~B~,A) provided to the
  shader.
ename:VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_709_KHR::
  The color channels are transformed from a Y'C~B~C~R~ representation to an
  R'G'B' representation as described in the "`BT.709 Y'C~B~C~R~ conversion`"
  section of the <<data-format,Khronos Data Format Specification>>.
ename:VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_601_KHR::
  The color channels are transformed from a Y'C~B~C~R~ representation to an
  R'G'B' representation as described in the "`BT.601 Y'C~B~C~R~ conversion`"
  section of the <<data-format,Khronos Data Format Specification>>.
ename:VK_SAMPLER_YCBCR_MODEL_CONVERSION_YCBCR_2020_KHR::
  The color channels are transformed from a Y'C~B~C~R~ representation to an
  R'G'B' representation as described in the "`BT.2020 Y'C~B~C~R~
  conversion`" section of the <<data-format,Khronos Data Format
  Specification>>.

In this operation, each output channel is dependent on each input channel.

An implementation may: clamp the R'G'B' results of these conversions to the
range [0,1].

The precision of the operations performed during model conversion must: be
at least that of the source format.

The alpha channel is not modified by these model conversions.

[NOTE]
.Note
====
Sampling operations in a non-linear color space can introduce color and
intensity shifts at sharp transition boundaries.
To avoid this issue, the technically precise color correction sequence
described in the "`Introduction to Color Conversions`" chapter of the
<<data-format,Khronos Data Format Specification>> may be performed as
follows:

 * Calculate the <<textures-normalized-to-unnormalized,unnormalized texel
   coordinates>> corresponding to the desired sample position.
 * For a pname:minFilter/pname:magFilter of ename:VK_FILTER_NEAREST:
   . Calculate (_i_,_j_) for the sample location as described under the
     "`nearest filtering`" formulae in <<textures-unnormalized-to-integer>>
   . Calculate the normalized texel coordinates corresponding to these
     integer coordinates.
   . Sample using <<samplers-YCbCr-conversion,sampler Y'C~B~C~R~
     conversion>> at this location.
 * For a pname:minFilter/pname:magFilter of ename:VK_FILTER_LINEAR:
   . Calculate (_i~[0,1]~_,_j~[0,1]~_) for the sample location as described
     under the "`linear filtering`" formulae in
     <<textures-unnormalized-to-integer>>
   . Calculate the normalized texel coordinates corresponding to these
     integer coordinates.
   . Sample using <<samplers-YCbCr-conversion,sampler Y'C~B~C~R~
     conversion>> at each of these locations.
   . Convert the non-linear AR'G'B' outputs of the Y'C~B~C~R~ conversions to
     linear ARGB values as described in the "`Transfer Functions`" chapter
     of the <<data-format,Khronos Data Format Specification>>.
   . Interpolate the linear ARGB values using the [eq]#{alpha}# and
     [eq]#{beta}# values described in the "`linear filtering`" section of
     <<textures-unnormalized-to-integer>> and the equations in
     <<textures-texel-filtering>>.

The additional calculations and, especially, additional number of sampling
operations in the ename:VK_FILTER_LINEAR case can be expected to have a
performance impact compared with using the outputs directly; since the
variation from "`correct`" results are subtle for most content, the
application author should determine whether a more costly implementation is
strictly necessary.
Note that if pname:chromaFilter and pname:minFilter/pname:magFilter are both
ename:VK_FILTER_NEAREST, these operations are redundant and sampling using
<<samplers-YCbCr-conversion,sampler Y'C~B~C~R~ conversion>> at the desired
sample coordinates will produce the "`correct`" results without further
processing.
====
endif::VK_KHR_sampler_ycbcr_conversion[]


== Texel Output Operations

_Texel output instructions_ are SPIR-V image instructions that write to an
image.
_Texel output operations_ are a set of steps that are performed on state,
coordinates, and texel values while processing a texel output instruction,
and which are common to some or all texel output instructions.
They include the following steps, which are performed in the listed order:

  * <<textures-output-validation,Validation operations>>
  ** <<textures-format-validation,Format validation>>
  ** <<textures-output-coordinate-validation,Coordinate validation>>
  ** <<textures-output-sparse-validation,Sparse validation>>
  * <<textures-output-format-conversion,Texel output format conversion>>


[[textures-output-validation]]
=== Texel Output Validation Operations

_Texel output validation operations_ inspect instruction/image state or
coordinates, and in certain circumstances cause the write to have no effect.
There are a series of validations that the texel undergoes.


[[textures-format-validation]]
==== Texel Format Validation

If the image format of the code:OpTypeImage is not compatible with the
sname:VkImageView's pname:format, the effect of the write on the image
view's memory is undefined, but the write must: not access memory outside of
the image view.


[[textures-output-coordinate-validation]]
=== Integer Texel Coordinate Validation

The integer texel coordinates are validated according to the same rules as
for texel input <<textures-integer-coordinate-validation,coordinate
validation>>.

If the texel fails integer texel coordinate validation, then the write has
no effect.


[[textures-output-sparse-validation]]
=== Sparse Texel Operation

If the texel attempts to write to an unbound region of a sparse image, the
texel is a sparse unbound texel.
In such a case, if the
slink:VkPhysicalDeviceSparseProperties::pname:residencyNonResidentStrict
property is ename:VK_TRUE, the sparse unbound texel write has no effect.
If pname:residencyNonResidentStrict is ename:VK_FALSE, the effect of the
write is undefined but must: be safe.
In addition, the write may: have a side effect that is visible to other
image instructions, but must: not be written to any device memory
allocation.


[[textures-output-format-conversion]]
=== Texel Output Format Conversion

Texels undergo a format conversion from the floating point, signed, or
unsigned integer type of the texel data to the elink:VkFormat of the image
view.
Any unused components are ignored.

Each component is converted based on its type and size (as defined in the
<<features-formats-definition,Format Definition>> section for each
elink:VkFormat), using the appropriate equations in
<<fundamentals-fp16,16-Bit Floating-Point Numbers>> and
<<fundamentals-fixedconv,Fixed-Point Data Conversion>>.


== Derivative Operations

SPIR-V derivative instructions include code:OpDPdx, code:OpDPdy,
code:OpDPdxFine, code:OpDPdyFine, code:OpDPdxCoarse, and code:OpDPdyCoarse.
Derivative instructions are only available in a fragment shader.

image::images/vulkantexture2.png[align="center",title="Implicit Derivatives",{fullimagewidth}]

Derivatives are computed as if there is a 2{times}2 neighborhood of
fragments for each fragment shader invocation.
These neighboring fragments are used to compute derivatives with the
assumption that the values of P in the neighborhood are piecewise linear.
It is further assumed that the values of P in the neighborhood are locally
continuous, therefore derivatives in non-uniform control flow are undefined.

[latexmath]
+++++++++++++++++++
\begin{aligned}
dPdx_{i_1,j_0} & = dPdx_{i_0,j_0} & = P_{i_1,j_0} - P_{i_0,j_0}  \\
dPdx_{i_1,j_1} & = dPdx_{i_0,j_1} & = P_{i_1,j_1} - P_{i_0,j_1}  \\
\\
dPdy_{i_0,j_1} & = dPdy_{i_0,j_0} & = P_{i_0,j_1} - P_{i_0,j_0}  \\
dPdy_{i_1,j_1} & = dPdy_{i_1,j_0} & = P_{i_1,j_1} - P_{i_1,j_0}
\end{aligned}
+++++++++++++++++++

The code:Fine derivative instructions must: return the values above, for a
group of fragments in a 2{times}2 neighborhood.
Coarse derivatives may: return only two values.
In this case, the values should: be:

[latexmath]
+++++++++++++++++++
\begin{aligned}
dPdx & =
  \begin{cases}
    dPdx_{i_0,j_0} & \text{preferred}\\
    dPdx_{i_0,j_1}
  \end{cases} \\
dPdy & =
  \begin{cases}
    dPdy_{i_0,j_0} & \text{preferred}\\
    dPdy_{i_1,j_0}
  \end{cases}
\end{aligned}
+++++++++++++++++++

code:OpDPdx and code:OpDPdy must: return the same result as either
code:OpDPdxFine or code:OpDPdxCoarse and either code:OpDPdyFine or
code:OpDPdyCoarse, respectively.
Implementations must: make the same choice of either coarse or fine for both
code:OpDPdx and code:OpDPdy, and implementations should: make the choice
that is more efficient to compute.

ifdef::VK_KHR_sampler_ycbcr_conversion[]
For multi-planar formats, the derivatives are computed based on the plane
with the largest dimensions.
endif::VK_KHR_sampler_ycbcr_conversion[]


[[textures-normalized-operations]]
== Normalized Texel Coordinate Operations

If the image sampler instruction provides normalized texel coordinates, some
of the following operations are performed.


[[textures-projection]]
=== Projection Operation

For code:Proj image operations, the normalized texel coordinates
[eq]#(s,t,r,q,a)# and (if present) the [eq]#D~ref~# coordinate are
transformed as follows:

[latexmath]
+++++++++++++++++++
\begin{aligned}
s       & = \frac{s}{q},       & \text{for 1D, 2D, or 3D image} \\
\\
t       & = \frac{t}{q},       & \text{for 2D or 3D image} \\
\\
r       & = \frac{r}{q},       & \text{for 3D image} \\
\\
D_{\textit{ref}} & = \frac{D_{\textit{ref}}}{q}, & \text{if provided}
\end{aligned}
+++++++++++++++++++


=== Derivative Image Operations

Derivatives are used for LOD selection.
These derivatives are either implicit (in an code:ImplicitLod image
instruction in a fragment shader) or explicit (provided explicitly by shader
to the image instruction in any shader).

For implicit derivatives image instructions, the derivatives of texel
coordinates are calculated in the same manner as derivative operations
above.
That is:

[latexmath]
+++++++++++++++++++
\begin{aligned}
\partial{s}/\partial{x} & = dPdx(s), & \partial{s}/\partial{y} & = dPdy(s), & \text{for 1D, 2D, Cube, or 3D image} \\
\partial{t}/\partial{x} & = dPdx(t), & \partial{t}/\partial{y} & = dPdy(t), & \text{for 2D, Cube, or 3D image} \\
\partial{u}/\partial{x} & = dPdx(u), & \partial{u}/\partial{y} & = dPdy(u), & \text{for Cube or 3D image}
\end{aligned}
+++++++++++++++++++

Partial derivatives not defined above for certain image dimensionalities are
set to zero.

For explicit LOD image instructions, if the optional: SPIR-V operand
[eq]#Grad# is provided, then the operand values are used for the
derivatives.
The number of components present in each derivative for a given image
dimensionality matches the number of partial derivatives computed above.

If the optional: SPIR-V operand [eq]#Lod# is provided, then derivatives are
set to zero, the cube map derivative transformation is skipped, and the
scale factor operation is skipped.
Instead, the floating point scalar coordinate is directly assigned to
[eq]#{lambda}~base~# as described in <<textures-level-of-detail-operation,
Level-of-Detail Operation>>.


=== Cube Map Face Selection and Transformations

For cube map image instructions, the [eq]#(s,t,r)# coordinates are treated
as a direction vector [eq]#(r~x~,r~y~,r~z~)#.
The direction vector is used to select a cube map face.
The direction vector is transformed to a per-face texel coordinate system
[eq]#(s~face~,t~face~)#, The direction vector is also used to transform the
derivatives to per-face derivatives.


=== Cube Map Face Selection

The direction vector selects one of the cube map's faces based on the
largest magnitude coordinate direction (the major axis direction).
Since two or more coordinates can: have identical magnitude, the
implementation must: have rules to disambiguate this situation.

The rules should: have as the first rule that [eq]#r~z~# wins over
[eq]#r~y~# and [eq]#r~x~#, and the second rule that [eq]#r~y~# wins over
[eq]#r~x~#.
An implementation may: choose other rules, but the rules must: be
deterministic and depend only on [eq]#(r~x~,r~y~,r~z~)#.

The layer number (corresponding to a cube map face), the coordinate
selections for [eq]#s~c~#, [eq]#t~c~#, [eq]#r~c~#, and the selection of
derivatives, are determined by the major axis direction as specified in the
following two tables.

.Cube map face and coordinate selection
[width="75%",frame="all",options="header"]
|====
| Major Axis Direction | Layer Number | Cube Map Face | [eq]#s~c~#  | [eq]#t~c~#  | [eq]#r~c~#
| [eq]#+r~x~#          | [eq]#0#      | Positive X    | [eq]#-r~z~# | [eq]#-r~y~# | [eq]#r~x~#
| [eq]#-r~x~#          | [eq]#1#      | Negative X    | [eq]#+r~z~# | [eq]#-r~y~# | [eq]#r~x~#
| [eq]#+r~y~#          | [eq]#2#      | Positive Y    | [eq]#+r~x~# | [eq]#+r~z~# | [eq]#r~y~#
| [eq]#-r~y~#          | [eq]#3#      | Negative Y    | [eq]#+r~x~# | [eq]#-r~z~# | [eq]#r~y~#
| [eq]#+r~z~#          | [eq]#4#      | Positive Z    | [eq]#+r~x~# | [eq]#-r~y~# | [eq]#r~z~#
| [eq]#-r~z~#          | [eq]#5#      | Negative Z    | [eq]#-r~x~# | [eq]#-r~y~# | [eq]#r~z~#
|====


.Cube map derivative selection
[width="75%",frame="all",options="header"]
|====
| Major Axis Direction | [eq]#{partial}s~c~ / {partial}x# | [eq]#{partial}s~c~ / {partial}y# | [eq]#{partial}t~c~ / {partial}x# | [eq]#{partial}t~c~ / {partial}y# | [eq]#{partial}r~c~ / {partial}x# | [eq]#{partial}r~c~ / {partial}y#

| [eq]#+r~x~#
| [eq]#-{partial}r~z~ / {partial}x# | [eq]#-{partial}r~z~ / {partial}y#
| [eq]#-{partial}r~y~ / {partial}x# | [eq]#-{partial}r~y~ / {partial}y#
| [eq]#+{partial}r~x~ / {partial}x# | [eq]#+{partial}r~x~ / {partial}y#

| [eq]#-r~x~#
| [eq]#+{partial}r~z~ / {partial}x# | [eq]#+{partial}r~z~ / {partial}y#
| [eq]#-{partial}r~y~ / {partial}x# | [eq]#-{partial}r~y~ / {partial}y#
| [eq]#-{partial}r~x~ / {partial}x# | [eq]#-{partial}r~x~ / {partial}y#

| [eq]#+r~y~#
| [eq]#+{partial}r~x~ / {partial}x# | [eq]#+{partial}r~x~ / {partial}y#
| [eq]#+{partial}r~z~ / {partial}x# | [eq]#+{partial}r~z~ / {partial}y#
| [eq]#+{partial}r~y~ / {partial}x# | [eq]#+{partial}r~y~ / {partial}y#

| [eq]#-r~y~#
| [eq]#+{partial}r~x~ / {partial}x# | [eq]#+{partial}r~x~ / {partial}y#
| [eq]#-{partial}r~z~ / {partial}x# | [eq]#-{partial}r~z~ / {partial}y#
| [eq]#-{partial}r~y~ / {partial}x# | [eq]#-{partial}r~y~ / {partial}y#

| [eq]#+r~z~#
| [eq]#+{partial}r~x~ / {partial}x# | [eq]#+{partial}r~x~ / {partial}y#
| [eq]#-{partial}r~y~ / {partial}x# | [eq]#-{partial}r~y~ / {partial}y#
| [eq]#+{partial}r~z~ / {partial}x# | [eq]#+{partial}r~z~ / {partial}y#

| [eq]#-r~z~#
| [eq]#-{partial}r~x~ / {partial}x# | [eq]#-{partial}r~x~ / {partial}y#
| [eq]#-{partial}r~y~ / {partial}x# | [eq]#-{partial}r~y~ / {partial}y#
| [eq]#-{partial}r~z~ / {partial}x# | [eq]#-{partial}r~z~ / {partial}y#
|====


=== Cube Map Coordinate Transformation

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
s_{\textit{face}} & =
    \frac{1}{2} \times \frac{s_c}{|r_c|} + \frac{1}{2} \\
t_{\textit{face}} & =
    \frac{1}{2} \times \frac{t_c}{|r_c|} + \frac{1}{2} \\
\end{aligned}
++++++++++++++++++++++++


=== Cube Map Derivative Transformation

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\frac{\partial{s_{\textit{face}}}}{\partial{x}} &=
    \frac{\partial}{\partial{x}} \left ( \frac{1}{2} \times \frac{s_{c}}{|r_{c}|}
    + \frac{1}{2}\right ) \\
\frac{\partial{s_{\textit{face}}}}{\partial{x}} &=
    \frac{1}{2} \times \frac{\partial}{\partial{x}}
    \left ( \frac{s_{c}}{|r_{c}|}  \right ) \\
\frac{\partial{s_{\textit{face}}}}{\partial{x}} &=
    \frac{1}{2} \times
    \left (
    \frac{
      |r_{c}| \times \partial{s_c}/\partial{x}
      -s_c \times {\partial{r_{c}}}/{\partial{x}}}
    {\left ( r_{c} \right )^2}
    \right )
\end{aligned}
++++++++++++++++++++++++

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\frac{\partial{s_{\textit{face}}}}{\partial{y}} &=
    \frac{1}{2} \times
    \left (
    \frac{
      |r_{c}| \times \partial{s_c}/\partial{y}
      -s_c \times {\partial{r_{c}}}/{\partial{y}}}
    {\left ( r_{c} \right )^2}
    \right )\\
\frac{\partial{t_{\textit{face}}}}{\partial{x}} &=
    \frac{1}{2} \times
    \left (
    \frac{
      |r_{c}| \times \partial{t_c}/\partial{x}
      -t_c \times {\partial{r_{c}}}/{\partial{x}}}
    {\left ( r_{c} \right )^2}
    \right ) \\
\frac{\partial{t_{\textit{face}}}}{\partial{y}} &=
    \frac{1}{2} \times
    \left (
    \frac{
       |r_{c}| \times \partial{t_c}/\partial{y}
      -t_c \times {\partial{r_{c}}}/{\partial{y}}}
    {\left ( r_{c} \right )^2}
    \right )
\end{aligned}
++++++++++++++++++++++++

ifdef::editing-notes[]
[NOTE]
.editing-note
==================
(Bill) Note that we never revisited ARB_texture_cubemap after we introduced
dependent texture fetches (ARB_fragment_program and ARB_fragment_shader).

The derivatives of [eq]#s~face~# and [eq]#t~face~# are only valid for
non-dependent texture fetches (pre OpenGL 2.0).
==================
endif::editing-notes[]


=== Scale Factor Operation, Level-of-Detail Operation and Image Level(s) Selection

LOD selection can: be either explicit (provided explicitly by the image
instruction) or implicit (determined from a scale factor calculated from the
derivatives).
The implicit LOD selected can: be queried using the SPIR-V instruction
code:OpImageQueryLod, which gives access to the [eq]#{lambda}#' and
[eq]#d~l~# values, defined below.


[[textures-scale-factor]]
==== Scale Factor Operation

The magnitude of the derivatives are calculated by:

  :: [eq]#m~ux~ = {vert}{partial}s/{partial}x{vert} {times} w~base~#
  :: [eq]#m~vx~ = {vert}{partial}t/{partial}x{vert} {times} h~base~#
  :: [eq]#m~wx~ = {vert}{partial}r/{partial}x{vert} {times} d~base~#

  :: [eq]#m~uy~ = {vert}{partial}s/{partial}y{vert} {times} w~base~#
  :: [eq]#m~vy~ = {vert}{partial}t/{partial}y{vert} {times} h~base~#
  :: [eq]#m~wy~ = {vert}{partial}r/{partial}y{vert} {times} d~base~#


where:

  :: [eq]#{partial}t/{partial}x = {partial}t/{partial}y = 0# (for 1D images)
  :: [eq]#{partial}r/{partial}x = {partial}r/{partial}y = 0# (for 1D, 2D or
     Cube images)

and

  :: [eq]#w~base~ = image.w#
  :: [eq]#h~base~ = image.h#
  :: [eq]#d~base~ = image.d#

(for the pname:baseMipLevel, from the image descriptor).


A point sampled in screen space has an elliptical footprint in texture
space.
The minimum and maximum scale factors [eq]#({rho}~min~, {rho}~max~)# should:
be the minor and major axes of this ellipse.

The _scale factors_ [eq]#{rho}~x~# and [eq]#{rho}~y~#, calculated from the
magnitude of the derivatives in x and y, are used to compute the minimum and
maximum scale factors.

[eq]#{rho}~x~# and [eq]#{rho}~y~# may: be approximated with functions
[eq]#f~x~# and [eq]#f~y~#, subject to the following constraints:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
& f_x \text{\ is\ continuous\ and\ monotonically\ increasing\ in\ each\ of\ }
    m_{ux},
    m_{vx}, \text{\ and\ }
    m_{wx} \\
& f_y \text{\ is\ continuous\ and\ monotonically\ increasing\ in\ each\ of\ }
    m_{uy},
    m_{vy}, \text{\ and\ }
    m_{wy}
\end{aligned}
++++++++++++++++++++++++

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\max(|m_{ux}|, |m_{vx}|, |m_{wx}|) \leq f_{x}
\leq \sqrt{2} (|m_{ux}| + |m_{vx}| + |m_{wx}|) \\
\max(|m_{uy}|, |m_{vy}|, |m_{wy}|) \leq f_{y}
\leq \sqrt{2} (|m_{uy}| + |m_{vy}| + |m_{wy}|)
\end{aligned}
++++++++++++++++++++++++


ifdef::editing-notes[]
[NOTE]
.editing-note
==================
(Bill) For reviewers only - anticipating questions.

We only support implicit derivatives for normalized texel coordinates.

So we are documenting the derivatives in s,t,r (normalized texel
coordinates) rather than u,v,w (unnormalized texel coordinates) as in OpenGL
and OpenGL ES specifications.
(I know, u,v,w is the way it has been documented since OpenGL V1.0.)

Also there is no reason to have conditional application of [eq]#w~base~,
h~base~, d~base~# for rectangle textures either, since they do not support
implicit derivatives.
==================
endif::editing-notes[]


The minimum and maximum scale factors [eq]#({rho}~min~,{rho}~max~)# are
determined by:

  :: [eq]#{rho}~max~ = max({rho}~x~, {rho}~y~)#
  :: [eq]#{rho}~min~ = min({rho}~x~, {rho}~y~)#

The sampling rate is determined by:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
N & = \min \left (\left \lceil \rho_{max}/\rho_{min}  \right \rceil ,max_{Aniso} \right )
\end{aligned}
++++++++++++++++++++++++

where:

  :: [eq]#sampler.max~Aniso~ = pname:maxAnisotropy# (from sampler
     descriptor)
  :: [eq]#limits.max~Aniso~ = pname:maxSamplerAnisotropy# (from physical
     device limits)
  :: [eq]#max~Aniso~ = min(sampler.max~Aniso~, limits.max~Aniso~)#

If [eq]#{rho}~max~ = {rho}~min~ = 0#, then all the partial derivatives are
zero, the fragment's footprint in texel space is a point, and [eq]#N#
should: be treated as 1.
If [eq]#{rho}~max~ {neq} 0# and [eq]#{rho}~min~ = 0# then all partial
derivatives along one axis are zero, the fragment's footprint in texel space
is a line segment, and [eq]#N# should: be treated as [eq]#max~Aniso~#.
However, anytime the footprint is small in texel space the implementation
may: use a smaller value of [eq]#N#, even when [eq]#{rho}~min~# is zero or
close to zero.

An implementation may: round [eq]#N# up to the nearest supported sampling
rate.

If [eq]#N = 1#, sampling is isotropic.
If [eq]#N > 1#, sampling is anisotropic.


[[textures-level-of-detail-operation]]
==== Level-of-Detail Operation

The LOD parameter [eq]#{lambda}# is computed as follows:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\lambda_{base}(x,y) & =
  \begin{cases}
    shaderOp.Lod                                 & \text{(from optional SPIR-V operand)} \\
    \log_2 \left ( \frac{\rho_{max}}{N} \right ) & \text{otherwise}
  \end{cases} \\
\lambda'(x,y)       & = \lambda_{base} + \mathbin{clamp}(sampler.bias + shaderOp.bias,-maxSamplerLodBias,maxSamplerLodBias) \\
\lambda             & =
  \begin{cases}
    lod_{max}, & \lambda' > lod_{max} \\
    \lambda',  & lod_{min} \leq \lambda' \leq lod_{max} \\
    lod_{min}, & \lambda' < lod_{min} \\
    \textit{undefined}, & lod_{min} > lod_{max}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++

where:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
sampler.bias       & = mipLodBias & \text{(from sampler descriptor)} \\
shaderOp.bias      & =
  \begin{cases}
    Bias & \text{(from optional SPIR-V operand)} \\
    0    & \text{otherwise}
  \end{cases} \\
sampler.lod_{min}  & = minLod & \text{(from sampler descriptor)} \\
shaderOp.lod_{min} & =
  \begin{cases}
    MinLod & \text{(from optional SPIR-V operand)} \\
    0      & \text{otherwise}
  \end{cases} \\
\\
lod_{min}          & = \max(sampler.lod_{min}, shaderOp.lod_{min}) \\
lod_{max}          & = maxLod & \text{(from sampler descriptor)}
\end{aligned}
++++++++++++++++++++++++

and [eq]#maxSamplerLodBias# is the value of the slink:VkPhysicalDeviceLimits
feature <<features-limits-maxSamplerLodBias,pname:maxSamplerLodBias>>.


[[textures-image-level-selection]]
==== Image Level(s) Selection

The image level(s) [eq]#d#, [eq]#d~hi~#, and [eq]#d~lo~# which texels are
read from are determined by an image-level parameter [eq]#d~l~#, which is
computed based on the LOD parameter, as follows:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
d_{l} =
  \begin{cases}
    nearest(d'),  & \text{mipmapMode is VK\_SAMPLER\_MIPMAP\_MODE\_NEAREST} \\
    d',           & \text{otherwise}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++

where:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
d' = level_{base} + \text{clamp}(\lambda, 0, q)
\end{aligned}
++++++++++++++++++++++++

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
nearest(d') & =
  \begin{cases}
    \left \lceil d' + 0.5\right \rceil - 1, &
        \text{preferred} \\
    \left \lfloor d' + 0.5\right \rfloor,   &
        \text{alternative}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++

and

  :: [eq]#level~base~ = pname:baseMipLevel#
  :: [eq]#q = pname:levelCount - 1#

pname:baseMipLevel and pname:levelCount are taken from the
pname:subresourceRange of the image view.

If the sampler's pname:mipmapMode is ename:VK_SAMPLER_MIPMAP_MODE_NEAREST,
then the level selected is [eq]#d = d~l~#.

If the sampler's pname:mipmapMode is ename:VK_SAMPLER_MIPMAP_MODE_LINEAR,
two neighboring levels are selected:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
d_{hi} & = \lfloor d_{l} \rfloor \\
d_{lo} & = min( d_{hi} + 1, q ) \\
\delta & = d_{l} - d_{hi}
\end{aligned}
++++++++++++++++++++++++

[eq]#{delta}# is the fractional value used for <<textures-texel-filtering,
linear filtering>> between levels.


[[textures-normalized-to-unnormalized]]
=== (s,t,r,q,a) to (u,v,w,a) Transformation

The normalized texel coordinates are scaled by the image level dimensions
and the array layer is selected.
This transformation is performed once for each level ([eq]#d# or [eq]#d~hi~#
and [eq]#d~lo~#) used in <<textures-texel-filtering,filtering>>.

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
u(x,y) & = s(x,y) \times width_{level} \\
v(x,y) & =
  \begin{cases}
    0                         & \text{for 1D images} \\
    t(x,y) \times height_{level} & \text{otherwise}
  \end{cases} \\
w(x,y) & =
  \begin{cases}
    0                         & \text{for 2D or Cube images} \\
    r(x,y) \times depth_{level}  & \text{otherwise}
  \end{cases} \\
\\
a(x,y) & =
  \begin{cases}
    a(x,y)                    & \text{for array images} \\
    0                         & \text{otherwise}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++

Operations then proceed to Unnormalized Texel Coordinate Operations.


== Unnormalized Texel Coordinate Operations


[[textures-unnormalized-to-integer]]
=== (u,v,w,a) to (i,j,k,l,n) Transformation And Array Layer Selection

The unnormalized texel coordinates are transformed to integer texel
coordinates relative to the selected mipmap level.

The layer index [eq]#l# is computed as:

  :: [eq]#l = clamp(RNE(a), 0, pname:layerCount - 1) {plus}
     pname:baseArrayLayer#

where pname:layerCount is the number of layers in the image subresource
range of the image view, pname:baseArrayLayer is the first layer from the
subresource range, and where:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\mathbin{RNE}(a) & =
  \begin{cases}
    \mathbin{roundTiesToEven}(a)                  & \text{preferred, from IEEE Std 754-2008 Floating-Point Arithmetic} \\
    \left \lfloor a + 0.5 \right \rfloor & \text{alternative}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++

The sample index n is assigned the value zero.

Nearest filtering (ename:VK_FILTER_NEAREST) computes the integer texel
coordinates that the unnormalized coordinates lie within:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
i &= \lfloor u \rfloor \\
j &= \lfloor v \rfloor \\
k &= \lfloor w \rfloor
\end{aligned}
++++++++++++++++++++++++

Linear filtering (ename:VK_FILTER_LINEAR) computes a set of neighboring
coordinates which bound the unnormalized coordinates.
The integer texel coordinates are combinations of [eq]#i~0~# or [eq]#i~1~#,
[eq]#j~0~# or [eq]#j~1~#, [eq]#k~0~# or [eq]#k~1~#, as well as weights
[eq]#{alpha}, {beta}#, and [eq]#{gamma}#.

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
i_0 &= \lfloor u - 0.5 \rfloor \\
i_1 &= i_0 + 1 \\
j_0 &= \lfloor v - 0.5 \rfloor \\
j_1 &= j_0 + 1 \\
k_0 &= \lfloor w - 0.5 \rfloor \\
k_1 &= k_0 + 1 \\
\alpha &= \left(u - 0.5\right) - i_0 \\
\beta &= \left(v - 0.5\right) - j_0 \\
\gamma &= \left(w - 0.5\right) - k_0
\end{aligned}
++++++++++++++++++++++++

ifdef::VK_IMG_filter_cubic[]
include::VK_IMG_filter_cubic/filter_cubic_texel_selection.txt[]
endif::VK_IMG_filter_cubic[]

If the image instruction includes a [eq]#ConstOffset# operand, the constant
offsets [eq]#({DeltaUpper}~i~, {DeltaUpper}~j~, {DeltaUpper}~k~)# are added
to [eq]#(i,j,k)# components of the integer texel coordinates.


[[textures-sample-operations]]
== Image Sample Operations


[[textures-wrapping-operation]]
=== Wrapping Operation

code:Cube images ignore the wrap modes specified in the sampler.
Instead, if ename:VK_FILTER_NEAREST is used within a mip level then
ename:VK_SAMPLER_ADDRESS_MODE_CLAMP_TO_EDGE is used, and if
ename:VK_FILTER_LINEAR is used within a mip level then sampling at the edges
is performed as described earlier in the <<textures-cubemapedge,Cube map
edge handling>> section.

The first integer texel coordinate i is transformed based on the
pname:addressModeU parameter of the sampler.

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
i &=
  \begin{cases}
    i \bmod size                                & \text{for repeat} \\
    (size - 1) - \mathbin{mirror}
        ((i \bmod (2 \times size)) - size)      & \text{for mirrored repeat} \\
    \mathbin{clamp}(i,0,size-1)                  & \text{for clamp to edge} \\
    \mathbin{clamp}(i,-1,size)                   & \text{for clamp to border} \\
    \mathbin{clamp}(\mathbin{mirror}(i),0,size-1) & \text{for mirror clamp to edge}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++

where:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
& \mathbin{mirror}(n) =
  \begin{cases}
    n      & \text{for}\  n \geq 0 \\
    -(1+n) & \text{otherwise}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++

[eq]#j# (for 2D and Cube image) and [eq]#k# (for 3D image) are similarly
transformed based on the pname:addressModeV and pname:addressModeW
parameters of the sampler, respectively.


[[textures-gather]]
=== Texel Gathering

SPIR-V instructions with code:Gather in the name return a vector derived
from a 2{times}2 rectangular region of texels in the base level of the image
view.
The rules for the ename:VK_FILTER_LINEAR minification filter are applied to
identify the four selected texels.
Each texel is then converted to an RGBA value according to
<<textures-conversion-to-rgba,conversion to RGBA>> and then
<<textures-component-swizzle,swizzled>>.
A four-component vector is then assembled by taking the component indicated
by the code:Component value in the instruction from the swizzled color value
of the four texels:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau[R] &= \tau_{i0j1}[level_{base}][comp] \\
\tau[G] &= \tau_{i1j1}[level_{base}][comp] \\
\tau[B] &= \tau_{i1j0}[level_{base}][comp] \\
\tau[A] &= \tau_{i0j0}[level_{base}][comp]
\end{aligned}
++++++++++++++++++++++++

where:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau[level_{base}][comp] &=
  \begin{cases}
    \tau[level_{base}][R], & \text{for}\  comp = 0 \\
    \tau[level_{base}][G], & \text{for}\  comp = 1 \\
    \tau[level_{base}][B], & \text{for}\  comp = 2 \\
    \tau[level_{base}][A], & \text{for}\  comp = 3
  \end{cases}\\
comp & \,\text{from SPIR-V operand Component}
\end{aligned}
++++++++++++++++++++++++

ifdef::VK_KHR_sampler_ycbcr_conversion[]
code:OpImage*Gather must: not be used on a sampled image with
<<samplers-YCbCr-conversion,sampler Y'C~B~C~R~ conversion>> enabled.
endif::VK_KHR_sampler_ycbcr_conversion[]


[[textures-texel-filtering]]
=== Texel Filtering

If [eq]#{lambda}# is less than or equal to zero, the texture is said to be
_magnified_, and the filter mode within a mip level is selected by the
pname:magFilter in the sampler.
If [eq]#{lambda}# is greater than zero, the texture is said to be
_minified_, and the filter mode within a mip level is selected by the
pname:minFilter in the sampler.

Within a mip level, ename:VK_FILTER_NEAREST filtering selects a single value
using the [eq]#(i, j, k)# texel coordinates, with all texels taken from
layer l.

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau[level] &=
  \begin{cases}
     \tau_{ijk}[level], & \text{for 3D image} \\
     \tau_{ij}[level],  & \text{for 2D or Cube image} \\
     \tau_{i}[level],   & \text{for 1D image}
   \end{cases}
\end{aligned}
++++++++++++++++++++++++

Within a mip level, ename:VK_FILTER_LINEAR filtering combines 8 (for 3D), 4
(for 2D or Cube), or 2 (for 1D) texel values, using the weights computed
earlier:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau_{3D}[level] & = reduce((1-\alpha)(1-\beta)(1-\gamma),\tau_{i0j0k0}[level], \\
          & \,              (\alpha)(1-\beta)(1-\gamma),\tau_{i1j0k0}[level], \\
          & \,              (1-\alpha)(\beta)(1-\gamma),\tau_{i0j1k0}[level], \\
          & \,              (\alpha)(\beta)(1-\gamma),\tau_{i1j1k0}[level],   \\
          & \,              (1-\alpha)(1-\beta)(\gamma),\tau_{i0j0k1}[level], \\
          & \,              (\alpha)(1-\beta)(\gamma),\tau_{i1j0k1}[level],   \\
          & \,              (1-\alpha)(\beta)(\gamma),\tau_{i0j1k1}[level],   \\
          & \,              (\alpha)(\beta)(\gamma),\tau_{i1j1k1}[level])
\end{aligned}
++++++++++++++++++++++++

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau_{2D}[level] & = reduce((1-\alpha)(1-\beta),\tau_{i0j0}[level], \\
          & \,              (\alpha)(1-\beta),\tau_{i1j0}[level], \\
          & \,              (1-\alpha)(\beta),\tau_{i0j1}[level], \\
          & \,              (\alpha)(\beta),\tau_{i1j1}[level])
\end{aligned}
++++++++++++++++++++++++

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau_{1D}[level] & = reduce((1-\alpha),\tau_{i0}[level], \\
          & \,              (\alpha),\tau_{i1}[level])
\end{aligned}
++++++++++++++++++++++++

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau[level] &=
  \begin{cases}
     \tau_{3D}[level], & \text{for 3D image} \\
     \tau_{2D}[level], & \text{for 2D or Cube image} \\
     \tau_{1D}[level], & \text{for 1D image}
   \end{cases}
\end{aligned}
++++++++++++++++++++++++

The function [eq]#reduce()# is defined to operate on pairs of weights and
texel values as follows.
When using linear or anisotropic filtering, the values of multiple texels
are combined using a weighted average to produce a filtered texture value.
ifdef::VK_EXT_sampler_filter_minmax[]
However, a filtered texture value can: also be produced by computing
per-component minimum and maximum values over the set of texels that would
normally be averaged.
The slink:VkSamplerReductionModeCreateInfoEXT::pname:reductionMode controls
the process by which multiple texels are combined to produce a filtered
texture value.
When set to ename:VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT, a weighted
average is computed.
If the reduction mode is ename:VK_SAMPLER_REDUCTION_MODE_MIN_EXT or
ename:VK_SAMPLER_REDUCTION_MODE_MAX_EXT, reduce() computes a component-wise
minimum or maximum, respectively, of the components of the set of provided
texels with non-zero weights.
endif::VK_EXT_sampler_filter_minmax[]

ifdef::VK_IMG_filter_cubic[]
include::VK_IMG_filter_cubic/filter_cubic_texel_filtering.txt[]
endif::VK_IMG_filter_cubic[]

Finally, mipmap filtering either selects a value from one mip level or
computes a weighted average between neighboring mip levels:

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau &=
  \begin{cases}
    \tau[d], & \text{for mip mode BASE or NEAREST} \\
    reduce((1-\delta),\tau[d_{hi}],\delta,\tau[d_{lo}]), & \text{for mip mode LINEAR}
  \end{cases}
\end{aligned}
++++++++++++++++++++++++


[[textures-texel-anisotropic-filtering]]
=== Texel Anisotropic Filtering

Anisotropic filtering is enabled by the pname:anisotropyEnable in the
sampler.
When enabled, the image filtering scheme accounts for a degree of
anisotropy.

The particular scheme for anisotropic texture filtering is implementation
dependent.
Implementations should: consider the pname:magFilter, pname:minFilter and
pname:mipmapMode of the sampler to control the specifics of the anisotropic
filtering scheme used.
In addition, implementations should: consider pname:minLod and pname:maxLod
of the sampler.

The following describes one particular approach to implementing anisotropic
filtering for the 2D Image case, implementations may: choose other methods:

Given a pname:magFilter, pname:minFilter of ename:VK_FILTER_LINEAR and a
pname:mipmapMode of ename:VK_SAMPLER_MIPMAP_MODE_NEAREST:

Instead of a single isotropic sample, N isotropic samples are be sampled
within the image footprint of the image level [eq]#d# to approximate an
anisotropic filter.
The sum [eq]#{tau}~2Daniso~# is defined using the single isotropic
[eq]#{tau}~2D~(u,v)# at level [eq]#d#.

[latexmath]
++++++++++++++++++++++++
\begin{aligned}
\tau_{2Daniso} & =
     \frac{1}{N}\sum_{i=1}^{N}
     {\tau_{2D}\left (
       u \left ( x - \frac{1}{2} + \frac{i}{N+1} , y \right ),
         \left ( v \left (x-\frac{1}{2}+\frac{i}{N+1} \right ), y
\right )
     \right )},
     & \text{when}\  \rho_{x} > \rho_{y} \\
\tau_{2Daniso} &=
     \frac{1}{N}\sum_{i=1}^{N}
     {\tau_{2D}\left (
        u \left  ( x, y - \frac{1}{2} + \frac{i}{N+1} \right ),
          \left ( v \left (x,y-\frac{1}{2}+\frac{i}{N+1} \right )
\right )
     \right )},
     & \text{when}\  \rho_{y} \geq \rho_{x}
\end{aligned}
++++++++++++++++++++++++

ifdef::VK_EXT_sampler_filter_minmax[]

When slink:VkSamplerReductionModeCreateInfoEXT::pname:reductionMode is set
to ename:VK_SAMPLER_REDUCTION_MODE_WEIGHTED_AVERAGE_EXT, the above summation
is used.
If the reduction mode is ename:VK_SAMPLER_REDUCTION_MODE_MIN_EXT or
ename:VK_SAMPLER_REDUCTION_MODE_MAX_EXT, then the value is instead computed
as [eq]#\tau_{2Daniso} = reduce(\tau_1, ..., \tau_N)#, combining all texel
values with non-zero weights.

endif::VK_EXT_sampler_filter_minmax[]


[[textures-instructions]]
== Image Operation Steps

Each step described in this chapter is performed by a subset of the image
instructions:

  * Texel Input Validation Operations, Format Conversion, Texel Replacement,
    Conversion to RGBA, and Component Swizzle: Performed by all instructions
    except code:OpImageWrite.
  * Depth Comparison: Performed by code:OpImage*code:Dref instructions.
  * All Texel output operations: Performed by code:OpImageWrite.
  * Projection: Performed by all code:OpImage*code:Proj instructions.
  * Derivative Image Operations, Cube Map Operations, Scale Factor
    Operation, Level-of-Detail Operation and Image Level(s) Selection, and
    Texel Anisotropic Filtering: Performed by all code:OpImageSample* and
    code:OpImageSparseSample* instructions.
  * (s,t,r,q,a) to (u,v,w,a) Transformation, Wrapping, and (u,v,w,a) to
    (i,j,k,l,n) Transformation And Array Layer Selection: Performed by all
    code:OpImageSample, code:OpImageSparseSample, and
    code:OpImage*code:Gather instructions.
  * Texel Gathering: Performed by code:OpImage*code:Gather instructions.
  * Texel Filtering: Performed by all code:OpImageSample* and
    code:OpImageSparseSample* instructions.
  * Sparse Residency: Performed by all code:OpImageSparse* instructions.